Escherichia coli
Escherichia coli, ein im Boden vorkommendes Bakterium. Gemeinfrei, USDA

Neuherberg. Wissenschaftler des Helmholtz Zentrums München haben gemeinsam mit Kollegen der Technischen Universität München (TUM) und des Karlsruher Instituts für Technologie (KIT) erforscht, wie Bodenmikroorganismen auf klimatische Veränderungen reagieren. Ihr Resultat: Extremwetterereignisse wie lange Trockenperioden und starke Niederschläge beeinflussen die Stoffwechselaktivität von Mikroben stark. Dies kann zu einer Veränderung des Stickstoffhaushalts im Boden führen und, in extremen Fällen, sogar Konzentrationen des Treibhausgases Distickstoffmonoxid in der Atmosphäre erhöhen.

Prof. Dr. Michael Schloter
Prof. Dr. Michael Schloter. © Helmholtz Zentrum München

Um den Einfluss des Klimawandels auf Bodenmikroorganismen unter möglichst natürlichen Bedingungen zu beobachten, verpflanzten die Wissenschaftler intakte Jungbuchen von einem kühlen, feuchten Standort, der in etwa den heutigen klimatischen Bedingungen entspricht, an eine südwestlich gelegene, wärmere Stelle. Diese spiegelte Temperatur und Niederschlagsprofile wider, wie sie durch den Klimawandel erwartet werden können. „Bodenart und Nährstoffgehalt blieben erhalten“, erläutert Prof. Dr. Michael Schloter, Leiter der Abteilung Umweltgenomik (EGEN) am Helmholtz Zentrum München. „Außerdem haben wir das Szenario zusätzlich verschärft, indem wir lange Trockenperioden, aber auch starke Regenfälle simulierten“, fügt er hinzu.

Dr. Silvia Gschwendtner
Dr. Silvia Gschwendtner. © Helmholtz Zentrum München

Um die Dynamik der Bodenmikroflora zu bestimmen, untersuchten die Forscher Markergene von Mikroorganismen, die typischerweise am Stickstoff-Umsatz beteiligt sind. Sie fanden heraus, dass bereits der Standortwechsel ohne zusätzliche Extremwetterbedingungen zu einer drastischen Veränderung der Stoffwechselaktivität und Zusammensetzung der Mikroorganismen führte. „Unter extremen klimatischen Veränderungen wurden diese Effekte noch deutlicher“, erklärt Dr. Silvia Gschwendtner (EGEN), die die Untersuchungen durchführte. Die Ergebnisse weisen darauf hin, dass die Aktivität der Mikroorganismen, die vor allem an der Denitrifikation beteiligt sind, positiv beeinflusst wird (bei der Denitrifikation wird das im Boden vorliegende, pflanzenverfügbare Nitrat zum gasförmigen Stickstoff und zu Stickoxiden verarbeitet). “Das wirkt sich einerseits auf den Wettbewerb zwischen Pflanzen und Mikroorganismen aus. Andererseits könnte es aber auch zu einer erhöhten Emission des klimarelevanten Treibhausgases Lachgas (Distickstoffmonoxid) führen“, sagt Geschwendtner.

Quelle: IDW